首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1347篇
  免费   100篇
  国内免费   92篇
  2023年   24篇
  2022年   26篇
  2021年   36篇
  2020年   33篇
  2019年   44篇
  2018年   44篇
  2017年   34篇
  2016年   37篇
  2015年   47篇
  2014年   98篇
  2013年   105篇
  2012年   72篇
  2011年   60篇
  2010年   68篇
  2009年   57篇
  2008年   65篇
  2007年   83篇
  2006年   69篇
  2005年   56篇
  2004年   51篇
  2003年   34篇
  2002年   46篇
  2001年   29篇
  2000年   22篇
  1999年   24篇
  1998年   39篇
  1997年   24篇
  1996年   14篇
  1995年   11篇
  1994年   14篇
  1993年   14篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   19篇
  1988年   13篇
  1987年   9篇
  1986年   2篇
  1985年   11篇
  1984年   14篇
  1983年   8篇
  1982年   16篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1539条查询结果,搜索用时 31 毫秒
31.
Major histocompatibility complex (MHC) and immune‐relevant gene markers were used to evaluate differences in reproductive success (RS) among naturally spawning coho salmon Oncorhynchus kisutch mate pairs involving an alternative male reproductive phenotype, known as jacks. These mate pairs included both hatchery‐reared and wild origin fish such that three classes were evaluated in two consecutive years (2005 and 2006) using a previously constructed multigenerational genetic pedigree: wild × wild (W × W), hatchery × hatchery (H × H) and wild × hatchery (W × H). Oncorhynchus kisutch jack mate pairs mated randomly based on immune‐relevant genotype in both years; a result consistent with the opportunistic mating strategy of jacks. An association between greater number of alleles shared at three immune‐relevant gene markers and increased RS was found for: W × H mate pairs in 2005 (BHMS429), W × H pairs in 2006 (SsalR016TKU) and W × W pairs in 2006 (OMM3085). No correlation between immune gene diversity and RS was found for H × H pairs in either year. The results suggest that the influence of immune‐relevant genotype on mating success may be different for jacks when compared with previous studies of large adult male O. kisutch.  相似文献   
32.
Cyanobacteria are among the most ancient of evolutionary lineages, oxygenic photosynthesizers that may have originated before 3.0 Ga, as evidenced by free oxygen levels. Throughout the Precambrian, cyanobacteria were one of the most important drivers of biological innovations, strongly impacting early Earth's environments. At the end of the Archean Eon, they were responsible for the rapid oxygenation of Earth's atmosphere during an episode referred to as the Great Oxidation Event (GOE). However, little is known about the origin and diversity of early cyanobacterial taxa, due to: (1) the scarceness of Precambrian fossil deposits; (2) limited characteristics for the identification of taxa; and (3) the poor preservation of ancient microfossils. Previous studies based on 16S rRNA have suggested that the origin of multicellularity within cyanobacteria might have been associated with the GOE. However, single‐gene analyses have limitations, particularly for deep branches. We reconstructed the evolutionary history of cyanobacteria using genome scale data and re‐evaluated the Precambrian fossil record to get more precise calibrations for a relaxed clock analysis. For the phylogenomic reconstructions, we identified 756 conserved gene sequences in 65 cyanobacterial taxa, of which eight genomes have been sequenced in this study. Character state reconstructions based on maximum likelihood and Bayesian phylogenetic inference confirm previous findings, of an ancient multicellular cyanobacterial lineage ancestral to the majority of modern cyanobacteria. Relaxed clock analyses provide firm support for an origin of cyanobacteria in the Archean and a transition to multicellularity before the GOE. It is likely that multicellularity had a greater impact on cyanobacterial fitness and thus abundance, than previously assumed. Multicellularity, as a major evolutionary innovation, forming a novel unit for selection to act upon, may have served to overcome evolutionary constraints and enabled diversification of the variety of morphotypes seen in cyanobacteria today.  相似文献   
33.
主要尿蛋白(MUPs)属于脂质运载蛋白家族,具有保守的中心疏水β链桶状特征性结构域,具有调节种属内与种属间个体间化学信息交流的功能.MUPs主要在肝合成并分泌入血,作为载体与信息素等亲脂性小分子结合,延长其半衰期,一并从肾过滤排泄入尿液,延缓尿迹中信息素的挥发,从而延长信息素的作用时间.啮齿类动物的MUPs本身具有高度多态性,能够发挥类似信息素的作用直接编码个体信息,调节种属内的生物活动.此外,MUPs还能够发挥利它素的功能引起其它种属的畏惧反应.新近研究发现,MUPs受到机体营养状态的调节,与代谢性疾病及糖脂代谢密切相关,但机制尚不清楚.MUPs的功能和机制探索对于化学信息交流与糖脂代谢研究具有重要意义.本文旨在对MUPs的最新研究结果展开简要综述及讨论.  相似文献   
34.
为了揭示云南省水稻主要育成品种(系)的遗传相似性。本文利用株高等17个表型性状和48个微卫星(SSR)分子标记,对云南省18个育种部门(或课题组)60年代以来选育的40个品种(系)进行遗传相似性评价。结果显示表型遗传相似性低于DNA水平。40个品种(系)基于17个表型性状的平均遗传相似系数为0.244,籼型为0.289,粳型为0.309,籼粳亚种间为0.162;基于48个SSR分子标记的平均遗传相似系数为0.383,籼型为0.318,粳型为0.478,籼粳亚种间为0.267。48个SSR分子标记共检测到等位基因214个,每个标记2~8,平均4.458个;平均有效等位基因数为2.8336,变幅为1.1515~5.2981;多态性信息含量(PIC)平均值为0.6058,变幅为0.2118~0.8816;基因型多样性指数(H′)平均值为1.1328,变幅为0.3768~1.8087。RM84、RM249、RM152、RM222和RM528是评价云南省水稻选育品种(系)遗传相似性比较理想的SSR分子标记。聚类分析显示,云南省水稻主要选育品种(系)表现为亚种间遗传差异明显,亚种内遗传差异较小,粳型遗传相似性高于籼型。表明云南省选育的粳型品种(系)遗传多样性低,且同一育种部门(或育种人)选育的品种遗传相似度高。  相似文献   
35.
Self/non‐self discrimination is a fundamental requirement of life. Endogenous peptides presented by major histocompatibility complex class I (MHC I) molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) are collectively referred to as the immunopeptidome. From a systems‐level perspective, very little is known about the origin, composition and plasticity of the immunopeptidome. Here, we show that the immunopeptidome, and therefore the nature of the immune self, is plastic and moulded by cellular metabolic activity. By using a quantitative high‐throughput mass spectrometry‐based approach, we found that altering cellular metabolism via the inhibition of the mammalian target of rapamycin results in dynamic changes in the cell surface MIPs landscape. Moreover, we provide systems‐level evidence that the immunopeptidome projects at the cell surface a representation of biochemical networks and metabolic events regulated at multiple levels inside the cell. Our findings open up new perspectives in systems immunology and predictive biology. Indeed, predicting variations in the immunopeptidome in response to cell‐intrinsic and ‐extrinsic factors could be relevant to the rational design of immunotherapeutic interventions.  相似文献   
36.
The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non‐mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island‐averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large‐scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.  相似文献   
37.
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.  相似文献   
38.
The intestinal microbiota has been reported to affect depression, a common mental condition with severe health-related consequences. However, what mediates the effect of the intestinal microbiota on depression has not been well elucidated. We summarize the roles of the mitochondria in eliciting beneficial effects on the gut microbiota to ameliorate symptoms of depression. It is well known that mitochondria play a key role in depression. An important pathogenic factor, namely inflammatory response, may adversely impact mitochondrial functionality to maintain cellular homeostasis. Dysfunction of mitochondria not only affects neuronal function but also reduces neuron cell numbers. We posit that the intestinal microbiota could affect neuronal mitochondrial function through short-chain fatty acids such as butyrate. Brain inflammatory processes could also be affected through the modulation of gut permeability and blood lipopolysaccharide levels. Aberrant mitochondria functionality coupled to adverse cellular homeostasis could be a key mediator for the effect of the intestinal microbiota on the progression of depression.  相似文献   
39.
雌雄同株黄瓜单性结实性主基因+多基因混合遗传分析   总被引:8,自引:2,他引:6  
以雌雄同株黄瓜强单性结实自交系'6457'和非单性结实自交系'6426'为亲本,建立了5世代联合群体(P1、P2、F1、F2、F2∶3),采用植物数量性状主基因+多基因混合遗传模型对群体的单性结实性进行多世代联合分析.结果表明:雌雄同株黄瓜单性结实性表现为不完全显性遗传,符合D-2遗传模型,受1对加性主基因+加性-显性多基因控制.主基因加性效应值为14.7,多基因加性效应值为20.9,多基因显性效应值为25.8.F2的遗传率为56.6%,F2∶3的遗传率为48.7%.因此,对雌雄同株黄瓜单性结实性的遗传改良,可选择强单性结实性材料,通过杂交、回交转移主基因,达到选育强单性结实性材料目的.  相似文献   
40.
利用光学显微镜和石蜡切片技术对生长在盐碱地的大车前和平车前的营养器官进行了比较解剖学研究。结果表明二者的解剖结构存在差异:平车前根的木栓层较大车前的狭窄,栓内层细胞层数较少;平车前叶表皮的细胞角质膜较薄,孔下室较小,构成维管束鞘的薄壁细胞较大车前小,束鞘细胞两层。二者都具有适应盐渍环境的结构特征:营养器官中通气组织发达;根结构中薄壁组织和木栓发达;叶表皮角质层发达。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号